Keduse Worku

Applied Scientist | Data Scientist | Probabilistic Modeling & Bayesian Inference

773-595-2241 | keduseworku@aya.yale.edu | keduseworku.github.io | linkedin.com/in/keduseworku

EDUCATION

Johns Hopkins University Baltimore, MD Ph.D. in Astrophysics (Summer 2026) 2026

2024 Master of Arts (M.A.) in Physics

Yale University New Haven, CT 2022

Bachelor of Science (B.S.) in Astrophysics

TECHNICAL SKILLS

Programming: Python, JAX, NumPy, SciPy, PyMC, PyTorch (basic), SQL

Machine Learning (ML): Decision trees, PCA, autoencoders, anomaly detection

Statistical & Computational Modeling:

- Probabilistic modeling & inference: Monte Carlo simulation, Hamiltonian Monte Carlo (HMC), Gaussian Processes, Hidden Markov Models, probabilistic classification
- Dynamical & stochastic systems: time-series modeling, stochastic differential equations, numerical interpolation
- Optimization & scalable computation: gradient-based optimization, GPU acceleration, vectorized computation

RELEVANT EXPERIENCE

Graduate Research Assistant

August 2022 - Present

Johns Hopkins University

Baltimore, MD

- Developed GPU-accelerated JAX simulations for neutrino-dark matter models, reducing runtime from 1 hour to 10 seconds (600× speedup).
- Designed probabilistic classification pipelines for 10,000+ noisy candidates using Bayesian inference, boosting selection accuracy by 20% via uncertainty-aware modeling and statistical validation.
- Led cross-institutional collaborations across U.S. and Europe, presenting results and streamlining data workflows to enhance computational efficiency and model accuracy.

Quantitative Research Summer Intern - Asset & Risk Modeling

May 2025 - August 2025

New York Life Insurance Company (Fortune 100)

New York, NY

- Implemented callable bond pricing models under the Hull-White short-rate framework, using stochastic differential equations and trinomial trees.
- Developed and validated numerical interpolation strategies and unit tests for fixed-income pricing workflows.

LSSTC Data Science Fellow

September 2023 - August 2025

Multi-Institutional

Baltimore, MD

- Applied ML methods for anomaly detection and classification on large-scale observational datasets, including treebased models and PCA.
- Developed scalable data pipelines for high-volume processing and time-series analysis of large-scale survey data.

Predoctoral Researcher

January 2022 - August 2022

Princeton University

Princeton, NJ

- Built an end-to-end Python pipeline for large-scale matrix computations and cross-correlation analysis, improving parameter estimation efficiency and uncertainty quantification within a 100+ member collaboration.
- Engineered novel contamination reduction techniques, enhancing resolution by over 50% for observational datasets.

Computational Research Intern

June 2021 - August 2021

Flatiron Center for Computational Astrophysics

New York, NY

- Optimized cross-correlation pipelines using frequency-specific window functions, reducing systematics and improving precision by 20%.
- Extracted statistical insights from multi-frequency data to improve parameter estimation accuracy.

SELECTED DATA SCIENCE & APPLIED ML PROJECTS

Apr 2025 - Present

- Benchmarked Hamiltonian Monte Carlo (Bayesian) against Hidden Markov Model (Frequentist) for inferring latent system states from noisy time-series data.
- Built a Bayesian inference pipeline using PyMC and HMMs to recover latent stochastic dynamics from bid-ask spreads and volatility, identifying early indicators of market stress.